
Step 1: Basics of Python 

Goals: 

 Understand the fundamentals of Python programming. 

 Write simple scripts and functions. 

Topics: 

 Introduction to Python and setting up the environment. 

 Basic syntax and structure. 

 Variables and data types (int, float, string, boolean). 

 Basic operators (arithmetic, comparison, logical). 

 Control flow (if statements, loops). 

 Functions and modules. 

Resources: 

 Books: "Python Crash Course" by Eric Matthes. 

 Online Courses: Codecademy's "Learn Python 3", Coursera's "Python for Everybody" by 

University of Michigan. 

 Tutorials: Real Python tutorials, W3Schools Python tutorials. 

Projects: 

 Simple calculator. 

 Temperature converter (Celsius to Fahrenheit). 

Step 2: Intermediate Python 

Goals: 

 Work with more complex data structures. 

 Understand file handling and exception handling. 

Topics: 

 Lists, tuples, sets, and dictionaries. 

 List comprehensions. 

 String manipulation. 

 File I/O (reading and writing files). 

 Exception handling. 

 Working with dates and times. 

Resources: 

 Books: "Automate the Boring Stuff with Python" by Al Sweigart. 

 Online Courses: Udemy's "Python Complete Bootcamp". 

 Tutorials: Real Python tutorials, GeeksforGeeks Python tutorials. 



Projects: 

 To-do list application. 

 Basic text-based game (e.g., Hangman). 

Step 3: Object-Oriented Programming (OOP) 

Goals: 

 Understand the principles of OOP in Python. 

 Create and manage classes and objects. 

Topics: 

 Classes and objects. 

 Inheritance, polymorphism, encapsulation, and abstraction. 

 Special methods (dunder methods). 

 Modules and packages. 

Resources: 

 Books: "Python OOP" by Dusty Phillips. 

 Online Courses: Coursera's "Python Classes and Inheritance" by University of Michigan. 

 Tutorials: Real Python OOP tutorials, Programiz OOP tutorials. 

Projects: 

 Simple library management system. 

 Inventory management system. 

Step 4: Advanced Python 

Goals: 

 Learn advanced Python concepts and standard libraries. 

 Gain proficiency in writing efficient and effective Python code. 

Topics: 

 Iterators and generators. 

 Decorators and context managers. 

 Regular expressions. 

 Lambda functions and higher-order functions. 

 Working with JSON and CSV files. 

 Introduction to multi-threading and multi-processing. 

Resources: 

 Books: "Fluent Python" by Luciano Ramalho. 

 Online Courses: Pluralsight's "Advanced Python" course. 

 Tutorials: Real Python advanced tutorials, Towards Data Science articles. 



Projects: 

 Web scraper using BeautifulSoup. 

 Automation scripts for repetitive tasks. 

Step 5: Web Development with Python 

Goals: 

 Develop web applications using popular Python web frameworks. 

Topics: 

 Introduction to Flask or Django. 

 Creating and managing routes. 

 Working with templates (Jinja2 for Flask, Django templates). 

 Forms and user input. 

 Database integration (SQLAlchemy for Flask, Django ORM). 

 Authentication and authorization. 

Resources: 

 Books: "Flask Web Development" by Miguel Grinberg, "Django for Beginners" by William 

S. Vincent. 

 Online Courses: Udemy's "Python and Django Full Stack Web Developer Bootcamp", 

Flask Mega-Tutorial by Miguel Grinberg. 

 Tutorials: Real Python Flask/Django tutorials, Official Flask/Django documentation. 

Projects: 

 Blog application. 

 Simple e-commerce website. 

Step 6: Data Science and Machine Learning 

Goals: 

 Analyze data and build machine learning models using Python. 

Topics: 

 Introduction to NumPy, Pandas, and Matplotlib. 

 Data analysis and manipulation. 

 Data visualization. 

 Introduction to machine learning with Scikit-Learn. 

 Building and evaluating machine learning models. 

Resources: 

 Books: "Python Data Science Handbook" by Jake VanderPlas, "Hands-On Machine 

Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron. 



 Online Courses: Coursera's "Applied Data Science with Python" by University of 

Michigan, Udacity's "Intro to Machine Learning". 

 Tutorials: Kaggle tutorials, Towards Data Science articles. 

Projects: 

 Data analysis project (e.g., analyzing a dataset from Kaggle). 

 Building a machine learning model (e.g., predicting house prices). 

Step 7: Specialized Areas 

Goals: 

 Explore specialized fields and advanced topics in Python. 

Areas: 

 Web Scraping (BeautifulSoup, Scrapy). 

 Automation (Selenium, PyAutoGUI). 

 Game Development (Pygame). 

 GUI Development (Tkinter, PyQt). 

 Networking (Socket programming). 

Resources: 

 Books: Specific to each area (e.g., "Web Scraping with Python" by Ryan Mitchell). 

 Online Courses: Specific to each area (e.g., "Web Scraping with Python and BeautifulSoup" 

on Udemy). 

 Tutorials: Specific tutorials on Real Python, GeeksforGeeks, and other platforms. 

Projects: 

 Web scraper for a specific site. 

 Automated task bot. 

 Simple game (e.g., Snake, Tic-Tac-Toe). 

 Desktop application with a GUI. 

Step 8: Contributing to Open Source and Building Portfolio 

Goals: 

 Contribute to open source projects. 

 Build a portfolio to showcase your skills. 

Actions: 

 Find open source projects on GitHub to contribute to. 

 Create a GitHub repository for your projects. 

 Build a personal website or portfolio site to showcase your work. 



Resources: 

 GitHub documentation and guides. 

 "Open Source Guide" by GitHub. 

 Personal portfolio tutorials on Medium, Dev.to, and other blogs. 

Final Tips 

 Practice regularly by building projects and solving problems on platforms like LeetCode, 

HackerRank, and Codewars. 

 Stay updated with the latest Python developments and libraries by following Python-related 

blogs, forums, and social media channels. 

 Join Python communities and attend meetups or conferences to network with other Python 

developers. 

By following this roadmap, you'll progress from a beginner to an advanced Python developer, 

equipped with the skills to tackle various real-world problems and projects 

 


	Step 1: Basics of Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 2: Intermediate Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 3: Object-Oriented Programming (OOP)
	Goals:
	Topics:
	Resources:
	Projects:

	Step 4: Advanced Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 5: Web Development with Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 6: Data Science and Machine Learning
	Goals:
	Topics:
	Resources:
	Projects:

	Step 7: Specialized Areas
	Goals:
	Areas:
	Resources:
	Projects:

	Step 8: Contributing to Open Source and Building Portfolio
	Goals:
	Actions:
	Resources:

	Final Tips

